
Step 1: Basics of Python 

Goals: 

 Understand the fundamentals of Python programming. 

 Write simple scripts and functions. 

Topics: 

 Introduction to Python and setting up the environment. 

 Basic syntax and structure. 

 Variables and data types (int, float, string, boolean). 

 Basic operators (arithmetic, comparison, logical). 

 Control flow (if statements, loops). 

 Functions and modules. 

Resources: 

 Books: "Python Crash Course" by Eric Matthes. 

 Online Courses: Codecademy's "Learn Python 3", Coursera's "Python for Everybody" by 

University of Michigan. 

 Tutorials: Real Python tutorials, W3Schools Python tutorials. 

Projects: 

 Simple calculator. 

 Temperature converter (Celsius to Fahrenheit). 

Step 2: Intermediate Python 

Goals: 

 Work with more complex data structures. 

 Understand file handling and exception handling. 

Topics: 

 Lists, tuples, sets, and dictionaries. 

 List comprehensions. 

 String manipulation. 

 File I/O (reading and writing files). 

 Exception handling. 

 Working with dates and times. 

Resources: 

 Books: "Automate the Boring Stuff with Python" by Al Sweigart. 

 Online Courses: Udemy's "Python Complete Bootcamp". 

 Tutorials: Real Python tutorials, GeeksforGeeks Python tutorials. 



Projects: 

 To-do list application. 

 Basic text-based game (e.g., Hangman). 

Step 3: Object-Oriented Programming (OOP) 

Goals: 

 Understand the principles of OOP in Python. 

 Create and manage classes and objects. 

Topics: 

 Classes and objects. 

 Inheritance, polymorphism, encapsulation, and abstraction. 

 Special methods (dunder methods). 

 Modules and packages. 

Resources: 

 Books: "Python OOP" by Dusty Phillips. 

 Online Courses: Coursera's "Python Classes and Inheritance" by University of Michigan. 

 Tutorials: Real Python OOP tutorials, Programiz OOP tutorials. 

Projects: 

 Simple library management system. 

 Inventory management system. 

Step 4: Advanced Python 

Goals: 

 Learn advanced Python concepts and standard libraries. 

 Gain proficiency in writing efficient and effective Python code. 

Topics: 

 Iterators and generators. 

 Decorators and context managers. 

 Regular expressions. 

 Lambda functions and higher-order functions. 

 Working with JSON and CSV files. 

 Introduction to multi-threading and multi-processing. 

Resources: 

 Books: "Fluent Python" by Luciano Ramalho. 

 Online Courses: Pluralsight's "Advanced Python" course. 

 Tutorials: Real Python advanced tutorials, Towards Data Science articles. 



Projects: 

 Web scraper using BeautifulSoup. 

 Automation scripts for repetitive tasks. 

Step 5: Web Development with Python 

Goals: 

 Develop web applications using popular Python web frameworks. 

Topics: 

 Introduction to Flask or Django. 

 Creating and managing routes. 

 Working with templates (Jinja2 for Flask, Django templates). 

 Forms and user input. 

 Database integration (SQLAlchemy for Flask, Django ORM). 

 Authentication and authorization. 

Resources: 

 Books: "Flask Web Development" by Miguel Grinberg, "Django for Beginners" by William 

S. Vincent. 

 Online Courses: Udemy's "Python and Django Full Stack Web Developer Bootcamp", 

Flask Mega-Tutorial by Miguel Grinberg. 

 Tutorials: Real Python Flask/Django tutorials, Official Flask/Django documentation. 

Projects: 

 Blog application. 

 Simple e-commerce website. 

Step 6: Data Science and Machine Learning 

Goals: 

 Analyze data and build machine learning models using Python. 

Topics: 

 Introduction to NumPy, Pandas, and Matplotlib. 

 Data analysis and manipulation. 

 Data visualization. 

 Introduction to machine learning with Scikit-Learn. 

 Building and evaluating machine learning models. 

Resources: 

 Books: "Python Data Science Handbook" by Jake VanderPlas, "Hands-On Machine 

Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron. 



 Online Courses: Coursera's "Applied Data Science with Python" by University of 

Michigan, Udacity's "Intro to Machine Learning". 

 Tutorials: Kaggle tutorials, Towards Data Science articles. 

Projects: 

 Data analysis project (e.g., analyzing a dataset from Kaggle). 

 Building a machine learning model (e.g., predicting house prices). 

Step 7: Specialized Areas 

Goals: 

 Explore specialized fields and advanced topics in Python. 

Areas: 

 Web Scraping (BeautifulSoup, Scrapy). 

 Automation (Selenium, PyAutoGUI). 

 Game Development (Pygame). 

 GUI Development (Tkinter, PyQt). 

 Networking (Socket programming). 

Resources: 

 Books: Specific to each area (e.g., "Web Scraping with Python" by Ryan Mitchell). 

 Online Courses: Specific to each area (e.g., "Web Scraping with Python and BeautifulSoup" 

on Udemy). 

 Tutorials: Specific tutorials on Real Python, GeeksforGeeks, and other platforms. 

Projects: 

 Web scraper for a specific site. 

 Automated task bot. 

 Simple game (e.g., Snake, Tic-Tac-Toe). 

 Desktop application with a GUI. 

Step 8: Contributing to Open Source and Building Portfolio 

Goals: 

 Contribute to open source projects. 

 Build a portfolio to showcase your skills. 

Actions: 

 Find open source projects on GitHub to contribute to. 

 Create a GitHub repository for your projects. 

 Build a personal website or portfolio site to showcase your work. 



Resources: 

 GitHub documentation and guides. 

 "Open Source Guide" by GitHub. 

 Personal portfolio tutorials on Medium, Dev.to, and other blogs. 

Final Tips 

 Practice regularly by building projects and solving problems on platforms like LeetCode, 

HackerRank, and Codewars. 

 Stay updated with the latest Python developments and libraries by following Python-related 

blogs, forums, and social media channels. 

 Join Python communities and attend meetups or conferences to network with other Python 

developers. 

By following this roadmap, you'll progress from a beginner to an advanced Python developer, 

equipped with the skills to tackle various real-world problems and projects 

 


	Step 1: Basics of Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 2: Intermediate Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 3: Object-Oriented Programming (OOP)
	Goals:
	Topics:
	Resources:
	Projects:

	Step 4: Advanced Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 5: Web Development with Python
	Goals:
	Topics:
	Resources:
	Projects:

	Step 6: Data Science and Machine Learning
	Goals:
	Topics:
	Resources:
	Projects:

	Step 7: Specialized Areas
	Goals:
	Areas:
	Resources:
	Projects:

	Step 8: Contributing to Open Source and Building Portfolio
	Goals:
	Actions:
	Resources:

	Final Tips

